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1. INTRODUCTION
Since the development of the microarray technique in 1995,

the interest in extracting meaningful biological knowledge
from gene expression data has experimented an enormous
increase. In particular, data mining researchers have devel-
oped ad–hoc techniques for many task, such as clustering or
classification.
Clustering has been applied to gene expression data, which

usually refers to conditions or patients, although genes can
also be grouped in order to search for functional similari-
ties. However, relevant genes are not necessarily related to
every condition, or in other words, there are genes that can
be relevant for a subset of conditions. From this point of
view, clustering can not only be addressed in one dimension
(over genes or conditions), but also in the two dimensions
simultaneously. This approach, named biclustering, identify
groups of genes that show “similar” level expression under
a specific subset of experimental conditions.
A bicluster is defined on a gene–expression matrix. Let

G = {g1, . . . , gN} be a set of genes and C = {c1, . . . , cM}
a set of conditions. The data can be viewed as an N × M
expression matrix EM . EM is a matrix of real numbers,
with possible null values, where each entry eij corresponds
to the logarithm of the relative abundance of the mRNA of
a gene gi under a specific condition cj . Thus a bicluster can
be seen as a sub-matrix IJ of EM .
Cheng and Church [1] proposed the biclustering of gene-

expression matrices, introducing the residue (rij = eij −
eiJ − eIj + eIJ ) of an element in the bicluster and the mean

squared residue (rIJ =
P

i∈I,j∈J r2
ij

|I|·|J| ) of a sub-matrix. In

the above formulas eiJ , eIj and eIJ are the mean of the ith
row, of the jth column and of the sub-matrix IJ identify-
ing the bicluster, respectively. The residue is an indicator
of the degree of coherence of an element with respect to
the remaining ones in the bicluster, given the tendency of
the relevant gene and the relevant condition. The lower the
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residue, the stronger the coherence. In addition, they ad-
justed that measure to reject trivial biclusters by means of

the row variance (varI,J =
P

i∈I,j∈J (eij−eiJ )2

|I|·|J| ). Biclusters

with high row variance contains genes that have large change
in expression values over different conditions.
If a bicluster has a mean squared residue lower than a

value δ it is called a δ-bicluster.
In this work, we address the biclustering problem with

evolutionary computation (EC), which has been proven to
have an excellent performance on highly complex optimiza-
tion problems.

2. THE ALGORITHM
The algorithm we propose, called SEBI, adopts a sequen-

tial covering strategy: a genetic algorithm, called EBI (Evo-
lutionary BIclustering), is called several times, until an end
condition is met. EBI takes as input the expression matrix
and the δ value and returns either a δ-bicluster or nothing.
In the former case, the returned bicluster is stored in a list
called LB, and EBI is called again. The end condition is
also met when EBI is called a maximum number of times
nb. When the end condition is met, the list LB is returned.
After a bicluster is returned, weights associated with the

expression matrix are adjusted. This operation is performed
in order to bias the search towards biclusters that do not
overlap with already found biclusters. The weight of an
element depends on the number of biclusters in LB contain-
ing the element. The more biclusters cover an element, the
higher the weight of the element will be. The aim of EBI is
to find δ–biclusters with maximum volume, with a relatively
high row variance, and minimizing the effect of overlapping
among biclusters.
The initial population consists of biclusters containing

only one element of the expression matrix. These biclusters
have the property of having a mean squared residue equal
to 0. Tournament selection is used for selecting parents.
Selected pairs of parents are recombined with a crossover
operator with a given probability pc (default value 0.9), and
the resulting offspring is mutated with a probability pm (de-
fault value 0.1). Three crossover operators can be applied
with equal probability: one-point, two-point and uniform
crossover. Three mutation operators are used, a standard
mutation operator, a mutation operator that adds a row and
a mutation operator that adds a column to the bicluster.
Each individual of the population encodes one bicluster.

Biclusters are encoded by means of binary strings of length
N + M , where N and M are the number of rows (genes)
and of columns (conditions) of the expression matrix, re-
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spectively. Each of the first N bits of the binary string is
related to the rows, in the order in which the bits appear
in the string. In the same way, the remaining M bits are
related to the columns. If a bit is set to 1, it means that
the relative row or column belongs to the encoded bicluster;
otherwise it does not. It is worth to note that given the
large value of N (several thousands), the search space size
for the evolutionary algorithm is huge, and therefore more
emphasis has to be placed on the performance of genetic
operators.
The fitness function rewards individuals encoding biclus-

ters with low mean squared residue, with high volume and
row variance and covering elements of the expression matrix
that are not covered by biclusters found by previous execu-
tions of EBI. The final objective of the EBI is to minimize
the fitness.

3. EXPERIMENTAL RESULTS
In order to assess the goodness of the proposed algorithm

for finding biclusters in expression data we performed exper-
iments on a well known dataset, the Embryonal tumors of
the central nervous system dataset. The expression matrix
contained in this dataset consists of 60 conditions and 7129
genes. This dataset was used to explore heterogeneity in
response to treatment of medulloblastomas [2]. The dataset
distinguishes between patients who are alive (39) after treat-
ment compared with those who succumbed to their disease
(21). In these experiments, the value of δ was set to 1800.
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Figure 1: Two examples of bicluster found on the
embryonal dataset.

Two examples of bicluster found on the embryonal datasets
are shown in figure 1. Bicluster 611 is particularly interest-
ing because even though the magnitude of the expression

levels of the genes under the given conditions are not close,
the patterns they exhibit are very alike. This type of pat-
tern is named shifting pattern. Bicluster 671 shows, instead,
genes that show strikingly up and down regulations under
the same set of conditions, and with magnitude of the ex-
pression levels of the genes close to each other.
Given the biological interest of the results, we have tested

our biclusters with information gathered from public data-
bases [3] (EMBL, The European Molecular Biology Labo-
ratory). Many of the genes found in biclusters belong to
the same gene network, in which relationships (edges in the
graph) come from co–expression, neighborhood, homology
or text mining analysis. For example, the bicluster labeled
611 has 13 mRNA sequences, in which there are 8 genes
(SCARB2, ACTG2, NR2C1, ATP2A2, CACNA2D1, SRP9,
RRM and COMT). This example is very interesting as there
are only four subgraphs. Three of them are controlled by the
genes SCARB2, NR2C1 and SRP9, respectively. However,
the fourth subgraphs contains the other five genes. Such five
genes are not connected to each other, but there exist other
genes that interconnect one to another. These new “bridge”
genes have been found in neighborhood, co–expression or in
PubMed with text mining methods. ATP2A2 has been as-
sociated to skin disorders, but not the others. However, this
relationship might discover interesting interactions during
the development of the disease.

4. CONCLUSIONS
In this paper we have introduced an algorithm based on

genetic algorithms, called SEBI, for finding biclusters on gene
expression data. The experimental results show that our
approach produces very interesting biclusters, being able to
extract shifting patterns from data. In addition, the sub-
sets of genes from some biclusters have been biologically
validated, by showing the relationships among genes in bi-
clusters. Other methodologies, like text mining, can help at
discovering other genes not present in biclusters that can re-
late some of them included in biclusters, giving some clues
about the possible implications of new genes in biological
processes, as regulatory networks or pathways.
In short, SEBI is successful in finding set of genes that

show strikingly similar up–regulations and down–regulations
under a set of conditions.

Acknowledgment
The research was partly supported by the Spanish Research
Agency CICYT under grant TIN2004–00159 and Junta de
Andalucia (III Research Program).

5. REFERENCES
[1] Y. Cheng and G. M. Church. Biclustering of expression

data. In Proceedings of the 8th International
Conference on Itelligent Systems for Molecular Biology
(ISMB’00), pages 93–103, 2000.

[2] S. L. Pomeroy and et al. Prediction of central nervous
system embryonal tumour outcome based on gene
expression. Nature, 415:436–442, 2002.

[3] C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt,
P. Bork, and B. Snel. STRING: a database of predicted
functional associations between proteins. Nucleic Acids
Res, 1(31):258–61, 2003.

474


